3D Printing Material: Nylon 3200 Glass-filled (Glass-Filled Nylon)

NylonGF Dragon detail Des NylonGF Brain NylonGF
NylonGF Dragon Small detail small Des NylonGF small Brain NylonGF

White

Raw
Polished


Overview

On this page you will find all of the information, tips and tricks for a successful 3D print in Nylon 3200 glass-filled (Glass-Filled Nylon). Specifically you’ll find information on:

General information

Nylon 3200 Glass-filled (Glass-Filled Nylon) material


DragonheadNylonGFClose.jpg

Objects printed in Nymon 3200 Glass-filled (glass-filled nylon) are made from a mix of polyamide powder and glass beads. The surface of the material is white and slightly porous. Nylon 3200 Glass-filled (glass-filled polyamide) is more durable and resistant than Polyamide 12. It gives you great freedom in your designs - allowing for both complex and inclosed volumes. The material is great for technical parts that need resistance and loads. The surface of Nylon 3200 Glass-filled (glass-filled nylon) is not as accurate as polyamide 12 but it will fit the requirements of technical parts. 

Processing times and pricing

The printing price of your design is calculated automatically when it is placed online. As you modify your object (changing size, using hollowing feature, etc.) you will note that the price changes automatically. The pricing is based on a series of factors, including: volume of material used, size of object, and multiple other factors.

The shipping delay for a Nylon 3200 glass-filled (glass-filled nylon) object is 5-12 days. This time can vary depending on the current volume of orders being processed. Adding a finish like polishing can add a few days to this time. The estimated shipping time is also calculated automatically as the object is uploaded.

Delivery time should be added to processing time and depends on the delivery option you choose.

Printing technique


Sculpteo uses a process called Selective Laser Sintering (SLS) for all Nylon 3200 Glass-filled (glass-filled nylon) prints. After your design is uploaded to the Sculpteo website, it undergoes a couple of steps before it is physically created:

  • Model transferred to 3D printer
  • Once you transfer your 3D model and submit your order on our website, it is received by a Sculpteo team member, who expertly places the model into the next available batch. The object is then printed through one of our EOS P395 or EOS P396.

  • Object is 3D printed
  • SLS uses a highly specific laser that sinters thin layers of our Nylon 3200 Glass-filled (glass-filled nylon) powder together one layer at a time. After each round of lasering, the printing bed is lowered and another layer of powder is evenly swept across the top for another round of sintering. This process is repeated until the object is completed.

  • Object is removed from batch
  • After the printer cools, the block of sintered powder is removed from printer and the printed objects are removed by hand. A part of the powder that was not sintered is recycled back into the printer for a future print.

  • Brushing and sandblasting
  • The object is then brushed, which removes a large portion of the powder, and sandblasted, which removes the fine powder that the brush may have missed.

Uses and maintenance

Nylon 3200 Glass-filled (glass-filled nylon) is a great 3D printing material that allows complex and resistant models. It is durable and strong that's why it perfectly fits technical uses. Nylon 3200 Glass-filled (glass-filled nylon) is used in many industries such as the automotive industry. It can be placed near engines and used for parts that require a lot of stresses and loads.

Complex models can be realized in glass-filled nylon, just as enclosed volumes. However, t he surface of the glass-filled polyamide 3D printed objects is limited to 100 µm that means fine details will not be optimally printed. Nylon 3200 Glass-filled (glass-filled nylon) is indeed an engineering material that is used for technical parts that require particular stiffness, high heat distortion temperature and low abrasive wear. 

The surface quality of the Nylon 3200 Glass-filled (glass-filled nylon) is excellent and designed for uses in dirty environments. 

It is mainly used for parts with requirements on abrasion and wear, stiff housings, parts used under elevated thermal conditions (for example for final parts within the engine area of cars), for deep-drawing dies, or for any other application which requires particular high heat distortion temperature, low abrasive wear and special stiffness.

Finishes

There are multiple finishing options available through Sculpteo. 

Finishing options:

  • Raw: sandblasted but unpolished, surface remains somewhat rough, most economical.
  • Polished: polished through mechanical polishing, smoother to touch, layers still somewhat visible on rounded objects.                 

Design Guidelines

Printing Resolution

Layer Thickness 100 µm

Our glass-filled nylon 3D printer, the EOS P395 gives us a layer precision of 100 µm (0.1mm).

Size Limitations

 Maximum size white/unpolished  190 mm x 240 mm x 315 mm (7.48 in x 9.45 in x 12.40 in)
 Maximum size polished  180 mm x 150 mm x 150 mm (7.08 in x 5.91 in x 5.91 in)


Alumide Sizes.jpg

The maximum size of your models are limited by the physical size of our 3D printers - nothing can be printed larger than the printer bed or the one of our mechanical polishing machine.

Your object must also respect the minimum dimensions of Nylon 3200 Glass-filled 3D prints (explained bellow).


Minimum Thickness & Geometry

Minimum wall thickness 1.5 mm
Minimum wall thickness for particular design aspects 2 mm

alumide thickness

The walls of your design must adhere to a minimum thickness of 1 mm in order to guarantee the structure will not break. If the walls of your model are less than 1 mm, we recommend you thicken them or add a support structure to maintain stability.

For an object that is sure to be solid, a minimum thickness of 2 mm is recommended.

Sculpteo offers an online solidity check tool which highlights parts of the print that may be too thin for a print. From there you are able to tweak your design in order to create an object that is an appropriate thickness. To use it, you just need to upload your 3D file, select your material and clic on “Verification” tab.

It is also important to keep in mind that the object is to be printed in a physical form. Thus if a thin aspect is supporting something that is too heavy for it, it may break - even though it is possible with the physics provided within the 3D printing program. We recommend adding a bit of thickness to the places that will get a lot of handling, or that support the most weight.

Do not forget

Keep in mind that our solidity check tool does not detect physical aberrations such as floating parts, unstable position, part supporting too much weight relative to its thickness, etc.. Particular care must be given to the geometry of your design and the most stressed parts must be thicken.



Etching/Embossing Depths

DetailsNylonGF.jpg

Minimum size of details 1 mm
Minimum size of text 1 mm
Enlargement ratio 1/1


alumide details

A detail’s minimum precision is mainly determined by the resolution of our printers. However, during the cleaning process, a fine layer of detail can also be lost. In order for a detail and text to be visible we recommend following our recommended sizes at the very least. To ensure a better powder removal (thus a better detail precision), the width of your details must be at least as big as depth.


Enclosed and Interlocking Volumes

Enclosed parts ? Yes
Interlocking parts ? Yes

PA details

Our Nylon 3200 Glass-filled (glass-filled nylon) material has the ability to be printed for some complex designs. An example of a complex design is a volume enclosed within another volume or with articulations. Our glass-filled Nylon 3D printers have the ability to print a fully interlocked object out of the printer, with no support structures to remove.


Minimum Spacing and Clearances

Minimum spacing between fixed walls 0,5 mm
Minimum clearance between parts 0,5 mm

alumide details

For a successful 3D print a minimum clearance between objects is required to allow the excess of material to be sand blown out. If this space is not left within the design, the object will be a solid. This is particularly important for articulated objects - as the space left between the walls will define the object’s ability to move.

Clearance should be at least 0.5 mm and depends on your object's size. For big sizes, the clearance should be greater. The heated zone of your object depends on the size, the larger the object the more time it will be exposed to high temperature: if the space left between the walls is too small, it will be weld because of heat spreading.

Piece Assembly

Assembly ? Yes
Minimum space 0,5 mm

Alumide details

Objects printed in Nylon 3200 Glass-filled (glass-filled nylon) can be printed to be assembled. As long as a width of at least 0.5 mm is left between the different parts of the object.


Hollowing

Hollowing ? Yes

alumide details

Our online hollowing optimization tool has the ability to greatly reduce the price of a print by reducing the amount of material used.

Using the tool requires adding two holes to your model, which will serve as the drain for the excess of powder material within the object. The minimum size of these holes is determined by our website. Otherwise it is possible to hollow your object manually in your 3D modeling software.


Multishell Files

Files with multiple objects ? No

silver multishell

This is not possible to 3D print a 3D file containing several objects with Nylon 3200 Glass-filled (glass-filled nylon).

Technical Specifications

Mechanical Properties Conditions Unit Value
Density of laser-sintered part EOS-Method kg/m3 1220
Tensile Modulus DIN EN ISO 527 MPa 3200 
Tensile strength DIN EN ISO 527 MPa 51 
Strain at break DIN EN ISO 527 %
Melting point DIN 11357 °C 176

To learn more about Nylon 3200 Glass-filled technical specifications, refer to Glass-filled Nylon Datasheet.



Upload a file

Other materials available on Sculpteo:

  • Flexible Plastic

    Flexible Plastic is an off-white powder-based material. Strong, with outstanding flexibility, it makes a top choice for 3D prints resembling soft products or for innovative uses as a final product....

  • Resin (CLIP)

    Parts printed with CLIP can be used for prototyping as well as end products. This technology produces consistent and predictable mechanical properties, creating parts that are smooth on the outside...

  • Resin (Polyjet)

    Resin is a rigid, glassy material with a smooth surface, perfect for high detailed visualization. Moving parts work quite well. It comes in black, white and translucent or painted in a wide range of...

  • Black Plastic

    This plastic is made from black powder and offers a continuous coloring that is resistant to abrasion. The surface has a sanded, grainy texture which can be polished. Being both solid and flexible,...